Mi perfil de Google+

Equipos de diagnóstico - Stop contaminación electromagnética

Buscar
Vaya al Contenido

Menu Principal:

Equipos de diagnóstico

AYUDA ELECTROSMOG > RADIACIONES Y EXPOSICIONES > SISTEMAS DE EXPOSICIÓN

Recomendaciones

Evite en lo posible, la exposición a estos equipos, ya que son de una exposición a las radiaciones elevadas, ya sea en baja frecuencia, (TAC, resonancia magnética,....etc...), así como en radiaciones ionizantes, ( rayos x , y todas su derivaciones ) .


Hay protocolos para establecer un máximo de pruebas de este tipo al año, y sobre todo en cabeza y zonas sensibles,
El precio elevado de estos tratamientos, lleva en algunos casos, por ejemplo, a recomendar estos tratamientos asiduamente, sobre todo radiografias bucodentales, en una simple limpieza de boca,.





Fluoroscopia
La fluoroscopia es un técnica de imagen usada en medicina para obtener imágenes en tiempo real de las estructuras internas de los pacientes mediante el uso de un fluoroscopio. En su forma más simple, un fluoroscopio consiste en una fuente de rayos X y una pantalla fluorescente entre las que se sitúa al paciente. Sin embargo, los fluoroscopios modernos acoplan la pantalla a un intensificador de imagen de rayos X y una cámara de vídeo CCD, lo que permite que las imágenes sean grabadas y reproducidas en un monitor. El uso de rayos X, un tipo de radiación ionizante, exige que los riesgos potenciales de un procedimiento sean sopesados cuidadosamente frente a los beneficios esperados para el paciente. Aunque los médicos siempre intentan usar dosis bajas de radiación durante las fluoroscopias, la duración de un procedimiento típico resulta a menudo en una dosis absorbida relativamente alta para el paciente. Avances recientes incluyen la digitalización de las imágenes capturadas y los sistemas detectores de paneles planos que reducen aún más la dosis de radiación para los pacientes

Equipo de Rayos X



Radiografía tomada por Wilhelm Röntgen en 1896.
La denominación rayos X designa a una radiación electromagnética , invisible, capáz de atraveso Cuerpos opacos y de imprimir las películas fotográficas . Los actuales sistemas digitales permitía la Obtención y Visualización de la imagen radiográfica directamente en una computadora (ordenador) sin Necesidad de imprimirla. La longitud de onda está entre 10 a 0,01 nanómetros , correspondiendo a Frecuencias en el rango de 30 a 3.000 P Hz (de 50 a 5.000 veces la frecuencia de la luz visible).

Los rayos X son una radiación electromagnética de la misma naturaleza que las ondas de radio, las ondas de microondas, los rayos infrarrojos, la luz visible, los rayos ultravioleta y los rayos gamma. La diferencia fundamental con los rayos gamma es su origen: los rayos gamma son radiaciones de origen nuclear que se producen por la desexcitación de un nucleón de un nivel excitado a otro de menor energía y en la desintegración de isótopos radiactivos, mientras que los rayos X surgen de fenómenos extranucleares, a nivel de la órbita electrónica, fundamentalmente producidos por desaceleración de electrones. La energía de los rayos X en general se encuentra entre la radiación ultravioleta y los rayos gamma producidos naturalmente. Los rayos X son una radiación ionizante porque al interactuar con la materia produce la ionización de los átomos de la misma, es decir, origina partículas con carga (iones).



Radiografía tomada por Wilhelm Röntgen en 1896.

¿Como se produce los rayos X?

Los rayos X se pueden observar cuando un haz de electrones muy energéticos (del orden de 1 keV) se desaceleran al chocar con un blanco metálico. Según la mecánica clásica, una carga acelerada emite radiación electromagnética, de este modo, el choque produce un espectro continuo de rayos X a partir de cierta longitud de onda mínima dependiente de la energía de los electrones. Este tipo de radiación se denomina Bremsstrahlung, o ‘radiación de frenado’. Además, los átomos del material metálico emiten también rayos X monocromáticos, lo que se conoce como línea de emisión característica del material. Otra fuente de rayos X es la radiación sincrotrón emitida en aceleradores de partículas.
Para la producción de rayos X en laboratorios, hospitales, etc. se usan los tubos de rayos X, que pueden ser de dos clases: tubos con filamento o tubos con gas.
El tubo con filamento es un tubo de vidrio al vacío en el cual se encuentran dos electrodos en sus extremos. El cátodo es un filamento de tungsteno y el ánodo es un bloque de metal con un línea característica de emisión de la energía deseada. Los electrones generados en el cátodo son enfocados hacia un punto en el blanco (que por lo general posee una inclinación de 45°) y los rayos X son generados como producto de la colisión. El total de la radiación que se consigue equivale al 1% de la energía emitida; el resto son electrones y energía térmica, por lo cual el ánodo debe estar refrigerado para evitar el sobrecalentamiento de la estructura. A veces, el ánodo se monta sobre un motor rotatorio; al girar continuamente el calentamiento se reparte por toda la superficie del ánodo y se puede operar a mayor potencia. En este caso el dispositivo se conoce como «ánodo rotatorio».1 Finalmente,el tubo de rayos X posee una ventana transparente a los rayos X, elaborada en berilio, aluminio o mica.


Existen varios sistemas de detección para rayos X. EL primer detector usado para este propósito fue la película fotográfica, preparadas con una emulsión apropiada para la longitud de onda de los rayos X. La sensibilidad de la película es determinada por el coeficiente de absorción másico y es restringida a un rango de líneas espectrales. La desventaja que presentan estas películas es un margen dinámico muy limitado y el largo tiempo y manipulaciones que se necesitan para revelarlas, por lo que han caído en desuso.
En las últimas décadas del siglo XX se empezaron a desarrollar nuevos detectores bidimensionales capaces de generar directamente una imagen digitalizada. Entre estos se cuentan las «placas de imagen» (image plates), recubiertas de un material fosforescente, donde los electrones incrementan su energía al absorber los rayos X difractados y son atrapados en este nivel en centros de color. Los electrones liberan la energía al iluminarse la placa con luz láser, emitiendo luz con intensidad proporcional a la de los rayos X incidentes en la placa. Estos detectores son un orden de magnitud más sensibles que la película fotográfica y poseen un margen dinámico superior en varios órdenes de magnitud. Otro tipo de dector bidimensional digital muy utilizado consiste en una placa fosforescente acoplada a una cámara CCD.2 En los años 2000 se empezaron a utilizar fotodiodos alineados formando una placa, denominados PAD (Pixel Array Detectors). Estos detectores se caracterizan por un gran margen dinámico y un tiempo muerto entre imágenes muy bajo, del orden de milisegundos.3
Otros detectores comúnmente usados para la detección de rayos X son los dispositivos de ionización, que miden la cantidad de ionización producto de la interacción con rayos X con las moléculas de un gas. En una cámara de ionización, los iones negativos son atraídos hacia el ánodo y los iones positivos hacia el cátodo, generando corriente en un circuito externo. La relación entre la cantidad de corriente producida y la intensidad de la radiación son proporcionales, así que se puede realizar una estimación de la cantidad de fotones de rayos X por unidad de tiempo. Los contadores que utilizan este principio son el contador Geiger, el contador proporcional y el detector de centelleo. Estos detectores se diferencian entre ellos por el modo de amplificación de la señal y la sensibilidad del detector.

Riesgos para la salud

La manera en la que la radiación afecta a la salud depende del tamaño de la dosis de esta. La exposición a las dosis bajas de rayos X a las que el ser humano se expone diariamente no son perjudiciales. En cambio, sí se sabe que la exposición a cantidades masivas puede producir daños graves. Por lo tanto, es aconsejable no exponerse a más radiación ionizante que la necesaria.
La exposición a cantidades altas de rayos X puede producir efectos tales como quemaduras en la piel, caída del cabello, defectos de nacimiento, cáncer, retraso mental y la muerte. La dosis determina si un efecto se manifiesta y con qué severidad. La manifestación de efectos como quemaduras de la piel, caída del cabello, esterilidad, náuseas y cataratas, requiere que se exponga a una dosis mínima (la dosis umbral). Si se aumenta la dosis por encima de la dosis umbral el efecto es más grave. En grupos de personas expuestas a dosis bajas de radiación se ha observado un aumento de la presión psicológica. También se ha documentado alteración de las facultades mentales (síndrome del sistema nervioso central) en personas expuestas a miles de rads de radiación ionizante.

Ortopantomografía


La ortopantomografía o radiografía panorámica es una técnica radiológica que representa, en una única película, una imagen general de los maxilares, la mandíbula y los dientes, por tanto, es de primordial utilidad en el área dentomaxilomandibular.


El diagnóstico odontológico, no solo de los dientes sino también del maxilar y mandíbula, es fundamental. Sin la ortopantomografía el odontólogo perdería una gran ayuda en la mayoría de las especialidades de su campo. Prácticamente es utilizada de forma sistemática en odontología, llegando a ser un arma diagnóstica rutinaria. El valor diagnóstico de la ortopantomografía en cirugía bucal, implantología, ortodoncia, periodoncia, patología oral y dental está claramente demostrado.


Ortopantomografía panorámica radiografía.

El término de radiografía panorámica es el más comúnmente utilizado, ya que la radiografía resultante muestra una visión panorámica de la cara y parte inferior de la cabeza. Laudenback describe la ortopantomografía como uno de los inventos radiológicos más originales de los últimos decenios. El 40% de los hallazgos patológicos principales y secundarios se descubren a partir de ella. Amplía el campo de diagnóstico en un 70% y reduce la dosis de radiación de la superficie cutánea en un 90% con respecto a las series radiográficas periapicales.
Cuando hace más de 70 años, comenzó la investigación, por parte de numerosos autores, de una técnica radiológica que permitiera obtener una imagen continua completa de los maxilares, de la mandíbula y estructuras anatómicas anexas, el primer problema evidente encontrado fue la dificultad de representar unos volúmenes de superficies curvas rodeadas de estructuras molestas. Los esfuerzos dedicados a la investigación fueron compensados, obteniéndose tres sistemas que permitieran conseguir una panorámica de los maxilares y de la mandíbula sin que sus curvaturas fueran un impedimento. Las posibilidades de conseguirlo eran tres: colocar un tubo de rayos X dentro de la boca del paciente y adaptar la película a la cara del mismo. Hacer girar el paciente entre el haz de rayos X y la película. Hacer girar la fuente de radiación y la película alrededor del paciente.
El primero de estos métodos aplica una técnica estática muy similar a la convencional. Sin embargo, los dos últimos sistemas se basan en los principios de la tomografía o radiografía por secciones, en la cual se obtiene de la forma más nítida posible la imagen de un plano del objeto, a la vez que se difumina todo aquello que se encuentra fuera del mismo. Por tanto, atendiendo a la solución utilizada se pueden clasificar los procedimientos para hacer una radiografía panorámica en: estáticos y dinámicos.



Equipos de ortopantomografía

Los aparatos cinemáticos pueden ser: de un centro de rotación, como por ejemplo el Rotograph; con dos centros de rotación, como el Panorex; con tres centros de rotación, por ejemplo el Orthopantomograph; y con más de tres centros de rotación, en este caso, el modelo original fue el G.E. 3000 desarrollado en 1970 por la General Electric Company. Como equipo con características especiales se presentó un aparato, el Zonarc, que realiza una auténtica zonografía panorámica con el paciente en decúbito, lo que lo hacía muy útil en pacientes encamados y, por tanto, de aplicación en politraumatizados. El aparato no tuvo una gran difusión, a pesar de esta aplicación de interés en servicios hospitalarios.
Las imágenes obtenidas en la ortopantomografía presentan cierto grado de magnificación. En los aparatos que trabajan con centros de rotación fijos la ampliación varía dentro de una determinada gama. Esta gama de magnificación existe porque la relación entre la posición del objeto, la película y el tubo de rayos X está variando continuamente, lo que ocurre porque la curvatura de los huesos maxilares no es circular. En aquellos aparatos en los que los centros de rotación son móviles, el tubo de rayos X y la película ocupan posiciones más estables, haciendo que la magnificación sea también más uniforme.
Desde hace años existen aparatos, de gran utilidad en algunas especialidades como la implantología, que permiten hacer ortopantomografías con un factor de magnificación vertical, constante y conocido. Hasta hace poco, todos los sistemas para la ortopantomografía se caracterizaban por el hecho de que la trayectoria recorrida por el centro de rotación, ya fuera fijo o variable, estaba determinada exclusivamente por elementos mecánicos. En la última generación de aparatos panorámicos se introduce la panorámica robótica y, tanto el movimiento de la fuente de rayos X como el de la película, es dirigido por un programa informático, desarrollado por el fabricante, lo que permite que con un único aparato se puedan efectuar distintas proyecciones geométricas y, lo que es también interesante, que se puedan modificar los programas directores con la única sustitución de un procesador. Esta moderna aplicación hace que los aparatos para ortopantomografía adquieran una gran versatilidad, ya que con ellos pueden efectuarse proyecciones especiales que permiten nuevas perspectivas del área maxilofacial. De esta manera, los nuevos equipos disponen de programas para efectuar radiografías panorámicas completas, radiografías parciales del sector dentario, radiografías localizadas en los senos maxilares, en las ramas ascendentes, en las articulaciones temporomandibulares e incluso planos transversales de maxilar y de mandíbula para diagnóstico pre-implantológico.
La imagen digital también se incorpora a la ortopantomografía permitiendo al profesional realizar estudios que pueden ser tratados y modificados para obtener un resultado más idóneo en algunos casos. Las técnicas panorámicas clásicas cambian la película como receptor de imagen, por receptores electrónicos que proporcionan la información de la imagen a un ordenador. El primer aparato panorámico con base en la radiografía computarizada lo diseñó Kashima en Japón, basándose en un equipo de la empresa Siemens y una placa de fósforo fotoestimulable modificada. Durante los últimos años se han desarrollado diferentes sistemas de radiografía panorámica digital, basados en la utilización de placas de fósforo y sensores del tipo CCD.

Peligros para la salud

Las dosis de radiación dependen de la técnica utilizada. Para su estudio se usan diferentes tipos de fantomas, cabeza y tronco divididos en secciones, compuestos de esqueleto natural envuelto de un material equivalente a un tejido blando. Se usan habitualmente dosímetros con polvo termoluminiscente. Los estudios de Hudson, Kumpula, Kuba, Nelson…obtienen dosis máximas de radiación alrededor de los centros de rotación laterales posteriores, aunque los valores no concuerdan en absoluto entre los diversos autores. Están de acuerdo en que la dosis absorbida en la radiografía panorámica es mucho menor que en una serie intrabucal completa. Parece que la energía impartida por una radiografía panorámica es comparable a dos radiografías retroalveolares con película de sensibilidad E, aunque la dosis absorbida por los diferentes órganos difiere de manera considerable. Esto es especialmente apreciable en las glándulas salivales mayores, donde se recibe una dosis mucho más alta con una ortopantomografía.

Angiografía

La angiografía es un examen de diagnóstico por imagen cuya función es el estudio de los vasos circulatorios que no son visibles mediante la radiología convencional. Su nombre procede de las palabras griegas angeion, "vaso", y graphien, "descripción". Podemos distinguir entre arteriografía cuando el objeto de estudio son las arterias, y flebografía cuando se refiere a las venas.

El neurólogo portugués Egas Moniz, ganador del premio Nobel en 1949, desarrolló en 1927 la angiografía por contraste radiopaco para diagnosticar distintos trastornos cerebrales, desde tumores hasta malformaciones vasculares. Se le considera uno de los pioneros en este campo, gracias a la Técnica de Seldinger en 1953 el proceso se hizo mucho más seguro, ya que dejó de requerirse la permanencia de instrumental afilado en la luz vascular.

Arteriografía coronaria

La angiografía se refiere por lo general a las distintas técnicas radiológicas que se utilizan para obtener imágenes con referencia al diámetro,, aspecto, número y estado clínico de las diversas partes del aparato vascular.
La angiografía se puede dividir en dos fases: la primera consiste en introducir el medio radiopaco o de contraste que permitirá que las venas, arterias o vasos linfáticos sean visibles a la radiografía; la segunda fase es tomar la o las radiografías de acuerdo a la secuencia predeterminada con objeto de realizar el estudio de los vasos en cuestión.
Subdivisiones

La palabra angiografía sigue siendo un término genérico por lo que para cuestiones técnicas, debe subdividirse según el tipo de examen y el órgano que se va a explorar:
Flebografía. Permite estudiar el recorrido de la circulación venosa.
Arteriografía. Deja observar anomalías de los vasos sanguíneos. Un estudio de este tipo es la angiografía con fluoresceína, una técnica que utiliza fluoresceína como medio de contraste.
Angiocardiografía. Examen que permite al facultativo verificar el estado clínico de las arterias del corazón.
Angioneumografía. Para detectar estados alterados en las venas y arterias pulmonares.
Linfografía. Examen para ver el estado de los vasos linfáticos.

Técnica

La angiografía es una técnica invasiva, pues requiere la introducción de un catéter en una arteria periférica, con frecuencia se usa la arteria femoral o incluso la vena cubital. Sin embargo existen técnicas no invasivas, como la angiografía por tomografía computarizada,1 para detectar un número importante de patologías con la misma precisión que la técnica invasiva.
El proceso se basa en en la administración por vía intravascular, de un contraste radiopaco. Los rayos X no pueden atravesar el compuesto por lo que se revela en la placa radiográfica la morfología del árbol arterial así como sus distintos accidentes vasculares, émbolos, trombosis, aneurismas, estenosis...
Al tener la sangre una densidad similar a la de los tejidos circundantes se requiere añadir un contraste radiopaco (que absorbe la radiación X) para que sea visible en la radiografía.


Arteriografía Coronaria.

La angiografía más habitual es la arteriografía coronaria. Mediante el catéter administramos el contraste en el área que queremos visualizar. Se introduce el catéter por la ingle o el antebrazo y se avanza cuidadosamente por el sistema arterial hasta alcanzar una de las dos arterias coronarias. Las imágenes obtenidas del tránsito del contraste y su distribución junto a la sangre nos permiten visualizar la apertura de las arterias. El diagnóstico de ateroesclerosis o de placas de ateroma mediante esta técnica deberá ser respaldado por otros procedimientos diagnósticos.

Metodo

La densidad radiológica de los vasos es igual a la de los demás tejidos blandos, por lo que en una placa realizada sin tomar medidas especiales no se ven arterias ni venas. Para poder distinguirlas, se requiere poner en circulación sanguínea una sustancia radioopaca, es decir, el medio de contraste. Aunque existen diversos medios de contraste, regularmente se utiliza uno que no cause toxicidad.

Spect
~
La tomografía SPECT computarizada de emisión de fotón único (Inglés emisión de fotón único tomografía computarizada ) son un médico tomografía técnica que utiliza Rayo gamma . Muy Es similar a uno de rayos X , pero utiliza una cámara sensible a ellos Rayo gamma y en ellos Rayo X . Al igual que en una radiografía cada una de ellas imágenes que se obtienen son de dos dimensiones, pero pueden combinar imágenes mucho tomada desde la posición profundidades diferentes que se enferme para obtener una imagen tridimensional. Esta imagen dimensional Florerias Después manipulada por ordenador para obtener secciones dimensionales del Cuerpo orientación any.
El SPECT utiliza los rayos gamma que producen isótopos radioactivos como el tecnecio 99m. Estos isótopos se introducen en el cuerpo humano como parte de moléculas biológicamente activas. El procedimiento es similar al del tomografía por emisión de positrones (PET), pero en el SPECT es el isótopo el que produce directamente el rayo gamma, mientras en el PET el isótopo produce un positrón que después se aniquila con un electrón para producir los dos rayos gamma. Estos dos rayos gamma salen en direcciones opuestas y su detección simultánea permite localizar el isótopo de forma más precisa que en el SPECT. El SPECT es, sin embargo, más simple porque pueden usarse isótopos más fáciles de obtener y de vida media más larga.
La cámara de rayos gamma se gira alrededor del paciente. Se adquieren imágenes en ángulos definidos, típicamente cada 3-6 grados. En la mayoría de los casos se realiza una rotación completa de 360 grados que permite una reconstrucción tridimensional óptima. Cada imagen tarda típicamente 15-20 segundos, con lo que el proceso completo tarda de 15 a 20 minutos. Se pueden utilizar también cámaras gamma con muchas cabezas para acelerar el proceso. Por ejemplo, se pueden poner dos cabezas espaciadas 180 grados para obtener dos proyecciones simultáneamente, o tres cabezas espaciadas 120 grados.

Tomografía PET por emisión de positrones

La tomografía por emisión de positrones o PET (por las siglas en inglés de Positron Emission Tomography), es una tecnología sanitaria propia de una especialidad médica llamada medicina nuclear.
La Tomografía por Emisión de Positrones es una técnica no invasiva de diagnóstico e investigación ¨in vivo¨ por imagen capaz de medir la actividad metabólica del cuerpo humano. Al igual que el resto de técnicas diagnósticas en Medicina Nuclear como el SPECT, la PET se basa en detectar y analizar la distribución tridimensional que adopta en el interior del cuerpo un radiofármaco de vida media ultracorta administrado a través de una inyección intravenosa. Según qué se desee estudiar se usan diferentes radiofármacos.
La imagen se obtiene gracias a que los tomógrafos son capaces de detectar los fotones gamma emitidos por el paciente. Éstos fotones gamma de 511 Kev son el producto de una aniquilación entre un positrón, emitido por el radiofármaco, y un electrón cortical del cuerpo del paciente. Ésta aniquilación da lugar a la emisión, fundamentalmente, de dos fotones. Para que estos fotones acaben por conformar la imagen deben detectarse ¨en coincidencia¨, es decir, al mismo tiempo; en una ventana de tiempo adecuada (nanosegundos), además deben provenir de la misma dirección y sentidos opuestos, pero además su energía debe superar un umbral mínimo que certifique que no ha sufrido dispersiones energéticas de importancia en su trayecto (fenómeno de scatter) hasta los detectores. Los detectores de un tomógrafo PET están dispuestos en anillo alrededor del paciente, y gracias a que detectan en coincidencia a los fotones generados en cada aniquilación conformaran la imagen.Para la obtención de la imagen estos fotones detectados, son convertidos en señales eléctricas. Esta información posteriormente se somete a procesos de filtrado y reconstrucción, gracias a los cuales se obtiene la imagen.

Existen varios radiofármacos emisores de positrones de utilidad médica. El más importante de ellos es el Flúor-18, que es capaz de unirse a la 2-O-trifluorometilsulfonil manosa para obtener el trazador 18-Flúor-Desoxi-Glucosa (18FDG). Gracias a lo cual, tendremos la posibilidad de poder identificar, localizar y cuantificar, a través del SUV (Standardized Uptake Value), el consumo de glucosa. Esto resulta un arma de capital importancia al diagnostico médico, puesto que muestra qué áreas del cuerpo tienen un metabolismo glucídico elevado, que es una característica primordial de los tejidos neoplásicos. La utilización de la 18FDG por los procesos oncológicos se basa en que en el interior de las células tumorales se produce, sobre todo, un metabolismo fundamentalmente anaerobio que incrementa la expresión de las moléculas transportadoras de glucosa (de la GLUT-1 a la GLUT-9), el aumento de la isoenzima de la hexokinasa y la disminución de la glucosa-6-fosfotasa. La 18FDG sí es captada por las células pero al no poder ser metabolizada, sufre un ¨atrapamiento metabólico¨ gracias al cual se obtienen las imágenes.
Así, la PET nos permite estimar los focos de crecimiento celular anormal en todo el organismo, en un solo estudio, por ser de un estudio de cuerpo entero, por lo tanto nos permitirá conocer la extensión. Pero además sirve, entre otras cosas, para evaluar en estudios de control la respuesta al tratamiento, al comparar el comportamiento del metabolismo en las zonas de interés entre los dos estudios.

Imagen capturada en una PET cerebral típica.
Esquema del Proceso de captura de la PET.


Para el paciente la exploración no es molesta ni dolorosa. Se debe consultar en caso de mujeres lactantes o embarazadas ya que en estas situaciones se debe de retrasar la prueba, o bien no realizarse. Se debe acudir en ayunas de 4-6 horas, evitando el ejercicio físico en el día previo a la exploración y sin retirar la medicación habitual. La hiperglucemia puede imposibilitar la obtención de imágenes adecuadas, obligando a repetir el estudio posteriormente. Tras la inyección del radiofármaco, el paciente permanecerá en una habitación en reposo.La exploración tiene una duración aproximada de 30-45 minutos.
Además de la oncología, donde la PET se ha implantado con mucha fuerza como técnica diagnóstica, desplazando al TAC como primera opción diagnóstica en algunas indicaciones. Otras áreas que se benefician de este tipo de exploraciones son la neurología y la cardiología. También tiene un gran papel en estudios de experimentación clínica.



Sonda de Captación Tiroidea:

Es utilizada para cuantificar la captación de un radiotrazador, usualmente el yodo 131, en la glándula tiroides o a nivel corporal. También se utiliza para labores de dosimetría de pacientes y del Personal Ocupacionalmente Expuesto. El Contador de Pozo que viene asociado a la Sonda de Captación se usa en labores de conteo de la cantidad de material radiactivo en una muestra
.
Sonda para Cirugía Radioguiada:


Se utilizan para detectar tejido que concentra un radiotrazador determinado en procedimientos quirúrgicos, para poder ser removido con presición. Están siendo ampliamente utilizadas en los últimos años principalmente en procedimientos de ganglio centinela en cirugías por cáncer de mama y en melanomas, así como en la extracción y Localización Radioguiada de Lesiones Ocultas.

Cobaltoterapia:

La cobaltoterapia es una terapia médica en la que la radiación emitida por el isótopo cobalto-60 se usada como parte de un Tratamiento para controlar Células cancerígenas . En veces se usada como un Tratamiento paliativas (Donde el cuidado no es posible y el Objetivo es el control de daños locales o alivio de los síntomas del cáncer ).
La cobaltoterapia es comúnmente utilizada para el tratamiento de tumores malignos (cáncer) y puede ser utilizada como terapia primaria. Es también usual combinar la cobaltoterapia con cirugía, quimioterapia o terapia con hormonas. Los tipos de cánceres más comunes pueden ser tratados con cobaltoterapia.
La terapia por radiación es comúnmente aplicada al cuerpo o núcleo principal de los tumores. Para proteger a los tejidos sanos de los efectos de la radiación (tales como los de la piel u órganos a través de los cuales la radiación deba pasar para alcanzar el punto donde se encuentra el tumor), los haces de radiación se coliman y enfocan desde diversos ángulos de manera que confluyan en el tumor. De esta forma se aumenta la dosis de radiación absorbida por el tumor en comparación con la absorbida por el tejido sano.

La resonancia magnética nuclear ( RMN ) es un físico fenómeno basado en las propiedades de la mecánica cuántica de los núcleos atómicos . RMN También se conoce en la familia de métodos científicos que explotan este fenómeno para estudiar moléculas (espectroscopia de RMN), macromoléculas (RMN biomolecular) y TEJIDOS y organismos completos (imagen MRI).
Todos ellos núcleo que posee un número impar de protones neutrones Tien un momento magnético y intrínseca momento angular , palabras adicionales, Tien espín> 0. Los núcleos malos son comúnmente empleados en RMN se protón ( 1 H , le preguntó RMN isótopo sensible después de que el tritio inestable, 3 H ), es 13 C y el 15 N , aunque isótopos LOS de núcleos MUCHOS Otros artículos ( 2 H , 10 B, 11 B, 14 N, 17 O, 19 F, 23 Na, 29 Si, 31 P, 35 Cl, 113 Cd, 195 Pt) también se utilizan.
Las frecuencias a las cuales resuena un átomo (i. e. dentro de una molécula) son directamente proporcionales a la fuerza del campo magnético ejercido, de acuerdo con la ecuación de la frecuencia de precesión de Larmor. La literatura científica hasta el 2008 incluye espectros en un gran intervalo de campos magnéticos, desde 100 nT hasta 20 T). Los campos magnéticos mayores son a menudo preferidos puesto que correlacionan con un incremento en la sensibilidad de la señal. Existen muchos otros métodos para incrementar la señal observada. El incremento del campo magnético también se traduce en una mayor resolución espectral, cuyos detalles son descritos por el desplazamiento químico y el efecto Zeeman.
La RMN estudia los núcleos atómicos al alinearlos a un campo magnético constante para posteriormente perturbar este alineamiento con el uso de un campo magnético alterno, de orientación ortogonal. La resultante de esta perturbación es el fenómeno que explotan las distintas técnicas de RMN. El fenómeno de la RMN también se utiliza en la RMN de campo bajo, la RMN de campo terrestre y algunos tipos de magnetómetros.

Radioterapia
La radioterapia es una forma de tratamiento basado en el empleo de radiaciones ionizantes (rayos X o radiactividad, la que incluye los rayos gamma y las partículas alfa).
En España, las especialidades médicas que se encargan de la radioterapia es la Oncología radioterápica y la Radiofísica Hospitalaria, la Oncología radioterápica reconocida desde 1978 y con el nombre actual desde 1984 y la Radiofísica Hospitalaria desde 1993. La Radioterapia es un tipo de tratamiento oncológico que utiliza las radiaciones para eliminar las células tumorales, (generalmente cancerígenas), en la parte del organismo donde se apliquen (tratamiento local). La radioterapia actúa sobre el tumor, destruyendo las células malignas y así impide que crezcan y se reproduzcan. Esta acción también puede ejercerse sobre los tejidos normales; sin embargo, los tejidos tumorales son más sensibles a la radiación y no pueden reparar el daño producido de forma tan eficiente como lo hace el tejido normal, de manera que son destruidos bloqueando el ciclo celular. De estos fenómenos que ocurren en los seres vivos tras la absorción de energía procedente de las radiaciones se encarga la radiobiología.
Otra definición dice que la oncología radioterápica o radioterapia es una especialidad eminentemente clínica encargada en la epidemiología, prevención, patogenia, clínica, diagnóstico, tratamiento y valoración pronóstica de las neoplasias, sobre todo del tratamiento basado en las radiaciones ionizantes.
Los equipos de radioterapia son una tecnología sanitaria y por tanto deben cumplir la reglamentación de los productos sanitarios para su comercialización.
La radioterapia es un tratamiento que se viene utilizando desde hace un siglo, y ha evolucionado con los avances científicos de la Física, de la Oncología y de los ordenadores, mejorando tanto los equipos como la precisión, calidad e indicación de los tratamientos. La radioterapia sigue siendo en el 2007 junto con la cirugía y la quimioterapia, uno de los tres pilares del tratamiento del cáncer. Se estima que más del 50% de los pacientes con cáncer precisarán tratamiento con radioterapia para el control tumoral o como terapia paliativa en algún momento de su evolución.

Tipos de Radioterapia

La distancia de la fuente
Según la distancia en que esté la fuente de irradiación, se pueden distinguir dos tipos de tratamientos:
Braquiterapia. La palabra braquiterapia procede del griego brachys que significa "corto". Por tanto la braquiterapia es el tratamiento radioterápico, que consiste en la colocación de fuentes radiactivas encapsuladas dentro o en la proximidad de un tumor (distancia "corta" entre el volumen a tratar y la fuente radiactiva). Se usa principalmente en tumores ginecológicos. Se puede combinar con teleterapia. Se debe aislar al paciente radioactivo mientras la fuente esté en su lugar.
Teleterapia o radioterapia externa, en que la fuente de irradiación está a cierta distancia del paciente en equipos de grandes dimensiones, como son la unidad de Cobalto y el acelerador lineal de electrones. En este tipo de tratamiento, que es el más común, los pacientes acuden diariamente de forma ambulatoria por un período variable, dependiendo de la enfermedad que se esté tratando. La radiación puede ser de rayos gamma, rayos X, electrones, protones o núcleos atómicos. Antiguamente se empleaban rayos X de ortovoltaje o baja energía (pocos miles de voltios) que no tenían capacidad de penetrar en la profundidad de los tejidos. Más tarde se incorporó la bomba de Cobalto 60 cuya radiación de rayos gamma con una energía de 1,6 MeV (megaelectrón-voltios) penetraban más en profundidad. A partir de los años 70 surgieron los aceleradores lineales de electrones (ALE, ó LINAC, del inglés LINear ACcelerator) que producen tanto rayos X de alta energía, pudiendo elegir la energía desde 1,5 hasta 25 MV, como electrones que sirven para tratar tumores superficiales.
La radioterapia externa convencional es la radioterapia conformada en tres dimensiones (RT3D). También pertenecen a este tipo de radioterapia, la radiocirugía, la radioterapia estereotáctica, la Radioterapia con Intensidad Modulada (IMRT), la radioterapia corporal total (TBI, del inglés Total Body Irradiation).
Más recientemente se ha incorporado la tecnología de IGRT, (del inglés Image-Guided Radiation Therapy) donde el Acelerador Lineal utiliza accesorios adicionales para tomarle una Tomografía Computadorizada Cónica al paciente antes de comenzar su sesión de terapia y, luego de comparar estas imágenes con las imágenes de Tomografía Computadorizada de la Simulación inicial, se determinan los movimientos ó ajustes necesarios para administrar la Radioterapia de una manera más efectiva y precisa.
[editar]Según la secuencia temporal
Según la secuencia temporal con respecto a otros tratamientos oncológicos, la radioterapia puede ser:
Radioterapia exclusiva: El único tipo de tratamiento oncológico que recibe el paciente es la radioterapia. Por ejemplo en el cáncer de próstata precoz.
Radioterapia adyuvante: Como complemento de un tratamiento primario o principal, generalmente la cirugía. Puede ser neoadyuvante si se realiza antes de la cirugía, pero sobre todo la adyuvancia es la que se realiza después de la cirugía (postoperatoria).
Radioterapia concomitante, concurrente o sincrónica: Es la radioterapia que se realiza simultáneamente con otro tratamiento, generalmente la quimioterapia, que mutuamente se potencian.

Finalidad de la radioterapia

Según la finalidad de la radioterapia, ésta puede ser:
Radioterapia radical o curativa: Es la que emplea dosis de radiación altas, próximas al límite de tolerancia de los tejidos normales, con el objetivo de eliminar el tumor. Este tipo de tratamiento suele ser largo y con una planificación laboriosa, donde el beneficio de la posible curación, supera la toxicidad ocasionada sobre los tejidos normales.
Radioterapia paliativa: En este tipo se emplean dosis menores de radiación, suficientes para calmar o aliviar los síntomas del paciente con cáncer, con una planificación sencilla y duración del tratamiento corto y con escasos efectos secundarios. Generalmente es una radioterapia antiálgica, pero también puede ser hemostática, descompresiva, para aliviar una atelectasia pulmonar, etc.
[editar]Lo que no es la radioterapia
La radioterapia o la oncología radioterápica no se debe confundir con:
Radiología, que es la especialidad médica encargada del diagnóstico por imagen basada en la radiación ionizante o rayos X, resonancia magnética, o ultrasonidos (ecografía).
Medicina nuclear, que es otra especialidad médica encargada del diagnóstico por la imagen y del tratamiento que proporcionan los radionúclidos inyectados en el cuerpo.
[editar]Personal de un equipo de radioterapia

En el tratamiento por radioterapia participa un equipo de profesionales integrado por la:
Oncólogo Radioterápico: Médico responsable de la prescripción del tratamiento, así como la supervisión y vigilancia del paciente.
Radiofísico hospitalario (Físico Médico): En el área de radioterapia , Responsable de la Dosimetría Física (funcionamiento dosimétrico de los equipos y control de calidad), así como de la Dosimetría Clínica individualizada para cada paciente (diseño del tratamiento). Es además asesor en tareas relacionadas con la imagen, compensaciones de tratamiento por interrupción y cuestiones radiobiológicas.
Técnico Especialista en Radioterapia: Responsable de la ejecución diaria del tratamiento y del cuidado del paciente en cada una de estas unidades, encargado del chequeo de movimientos mecánicos de la unidad y encargado de realizar de la Simulaciones del paciente (TAC). En las Unidades de Radiofísica, y siempre bajo supervisión del Radiofísico, diseña dosimetrías sencillas y ejecuta controles de calidad a las unidades de tratamiento.
Ingeniero: Revisa periódicamente los equipos, realizando manutención preventiva y reparación. Responsable del correcto funcionamiento mecánico y electrónico de los equipos.
Enfermero: El profesional de enfermería debe tener formación académica específica en este campo, es responsable del cuidado de los pacientes durante el tratamiento, evalúa su condición general antes de iniciarlo, le informa sobre los posibles efectos secundarios y le enseña cómo identificarlos y tratarlos. Durante el curso de la radioterapia,identifica y soluciona los problemas o inquietudes en relación con los efectos secundarios que presenta y le educa sobre los cuidados a realizar. En braquiterapia, es responsable del cuidado del paciente durante el procedimiento y la hospitalización si tiene lugar, participa en la prevención y el manejo de lesiones u otra morbilidad radio inducida y en el seguimiento y control de los pacientes a mediano y largo plazo
Auxiliar de radioterapia, auxiliar administrativo y secretariado: Se encargan de la organización de la consulta, citas e informes.
En el primer contacto que tiene el paciente con el oncólogo radioterapeuta el médico elabora una historia clínica en la que incorpora las exploraciones que le hayan practicado al paciente, realizará una exploración física general y del área afectada. Es posible que se solicite algún examen adicional. Se explicará al paciente el tratamiento, su duración, días que tiene que acudir, efectos, etc. El paciente debe comprender lo explicado, preguntar las dudas que le surjan y firmar el consentimiento informado.
PLANIFICACIÓN DEL TRATAMIENTO (Simulación virtual): la planificación se ha de realizar en tres dimensiones con simulación virtual. Para ello, es preciso llevar a cabo una TAC en la posición en que se aplicará el tratamiento. Se le tatuará un punto central que será el origen de todos los desplazamientos en los tres ejes del espacio.
DOSIMETRIA FÍSICA:Con las imágenes del TAC digitalizadas en un ordenador, se delimitan las áreas a tratar y los órganos críticos. Con la aplicación informática, se añaden los haces de fotones, la intensidad del haz, y se reconstruyen los volúmenes de las áreas delimitadas. El mismo programa informático facilita radiografías digitales reconstruidas que imitan el aspecto del campo de tratamiento sobre una radiografía real.
VERIFICACIÓN DEL TRATAMIENTO: Una vez planificado el tratamiento, el paciente acude a la unidad de tratamiento, y en la misma posición en la que se realizó el TAC de planificación y con unos desplazamientos en los tres ejes del espacio a partir del punto de origen, se realiza una radiografía o una imagen portal electrónica (rayos X de alta energía). La imagen que reproduce esta radiografía debe ser lo más parecida posible a la Radiografía Digital Reconstruida, y si es así comienza el tratamiento.
TRATAMIENTO: Consiste en varias sesiones de corta duración, habitualmente diarias de Lunes a Viernes, descansando Sábados, Domingos y festivos. En cada sesión de tratamiento se reproduce la misma posición que es la misma que cuando se realizó el TAC de planificación, y que en la verificación. Durante el tratamiento el paciente es monitorizado por cámara de vídeo y micrófonos, para atender cualquier incidencia y ante la posibilidad de interrumpir el tratamiento. Periódicamente se pueden realizar radiografías de control para optimizar el tratamiento.
SEGUIMIENTO DURANTE EL TRATAMIENTO: Los pacientes suelen tener visita semanal con el oncólogo radioterapéuta en la que deben contar los posibles efectos agudos de la radiación y formular preguntas que aún no se habían hecho. Si el paciente tuviera cualquier problema durante el tratamiento debe solicitar cita el mismo día que acuda al tratamiento.
SEGUIMIENTO UNA VEZ FINALIZADO EL TRATAMIENTO: El paciente debería acudir a la consulta de Oncología Radioterápica periódicamente, como mínimo una vez al año, para valorar toxicidades tardías y conocer los resultados del tratamiento efectuado. Si el seguimiento de la enfermedad lo realiza el oncólogo radioterapéuta, éste debe solicitar las exploraciones que estime oportuno para detectar o descartar recidivas y remitir al paciente al especialista determinado.

Efectos secundarios de la radioterapia

Son cansancio y fatiga, inflamación y pesadez en la mama, enrojecimiento y sequedad en la piel (como después de una quemadura solar), que suele desaparecer tras seis a doce semanas. La acción de estos aparatos suele estar muy focalizada de manera que sus efectos suelen ser breves y, generalmente, bien tolerados. Una buena combinación de descanso, actividad física y prendas delicadas pueden atenuar estas molestias. Las células no tumorales también son sensibles del mismo modo a los efectos radioterapéuticos, por lo que lo que en la mayoría de casos también resultan afectadas por este tratamiento. Ya sean en zonas locales focalizadas o a la hora de efectuar una radiación con mayor margen. Esto tiene como efectos secundarios la muerte del resto de células plasmáticas (glóbulos blancos) no cancerígenas de otras partes del organismo. Crea una inmunodeficiencia realmente importante, provocando una exposición mayor a infecciones y hace que la recuperación del paciente sea lenta.


(Fuentes obtenidas de la Wikipedia)

 
Resultados de la búsqueda activa
Directorio de Contaminación electromagnética
Meilleur du Web : Annuaire des meilleurs sites Web.
Licencia de Creative Commons
This obra by http://www.gigahertz.es is licensed under a Creative Commons Reconocimiento-SinObraDerivada 3.0 Unported License.
Regreso al contenido | Regreso al menu principal